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Abstract—Cut-based directed graph (digraph) clustering often
focuses on finding dense within-cluster or sparse between-cluster
connections, similar to cut-based undirected graph clustering. In
contrast, for flow-based clusterings the edges between clusters
tend to be oriented in one direction and have been found in
migration data, food webs, and trade data. In this paper we
introduce a spectral algorithm for finding flow-based clusterings.
The proposed algorithm is based on recent work which uses
complex-valued Hermitian matrices to represent digraphs. By
establishing an algebraic relationship between a complex-valued
Hermitian representation and an associated real-valued, skew-
symmetric matrix the proposed algorithm produces clusterings
while remaining completely in the real field. Our algorithm is
more memory efficient, requires less computation, and provably
preserves solution quality. We also show the algorithm can
be easily implemented using standard computational building
blocks, possesses better numerical properties, and loans itself
to a natural interpretation via an objective function relaxation
argument.

Index Terms—Spectral Clustering, Digraph, Oriented Graph

I. INTRODUCTION

Many methods for undirected graph clustering focus on
finding minimal cuts between dense clusters [1] and many
directed graph (digraph) clustering methods seek to extend
this idea [2], [3]. However, there has also been attention paid
to finding large ‘imbalanced cuts’ in digraphs. These are cuts
where most of the edges are oriented from one cluster to the
other with few oriented in the reverse direction. Such cuts are
present in migration data [4], food webs [5], [6], and trade data
[7]. We refer to this dichotomy as density versus flow-based
clustering.

Spectral approaches are frequently used for density-based
graph clustering [1], [8]–[10]. More recently, researchers have
also applied spectral techniques for finding flow-based clus-
terings. Spectral algorithms for mining flow-based patterns
vary primarily in the matrix used to represent the digraph.
The matrix representations used can be broadly classified
as general non-symmetric matrices, symmetrizations of the
adjacency matrix, and complex-valued Hermitian matrices. In
particular, complex-valued Hermitian matrices have received
much recent attention for encoding a wide variety of digraph
structural properties. [4], [7], [11]–[13].

Complex-valued Hermitian adjacency or Laplacian matrices
are appealing because they have nice theoretical properties.

Like real-valued symmetric matrices, complex-valued Hermi-
tian matrices are subject to the spectral theorem, min-max
theorem for eigenvalues, eigenvalue interlacing properties, and
more. In these complex-valued Hermitian matrix representa-
tions, complex numbers are used to encode edge direction.
This is a potential advantage over symmetrization approaches
which often lose information related to edge direction and
asymmetric representations which often lack useful theoretical
properties. Some recent applications of Hermitian represen-
tations include the so-called magnetic digraph Laplacian’s
utilization in signal processing [12] and node classification and
link prediction [13]. There has also been interest in developing
a spectral theory for other, closely related complex-valued
Hermitian matrices [14], [15] . For flow-based clustering, Cu-
curingu et al. [4] proposed an algorithm for finding imbalanced
cuts based on a complex-valued Hermitian digraph adjacency
matrix whose effectiveness they demonstrate via an analysis
of a Directed Stochastic Block Model (DSBM) and empirical
studies on real data.

In this work, we propose and compare spectral clustering
algorithms for finding imbalanced cuts in digraphs. The main
results are facilitated by an algebraic relationship between Cu-
curingu et al.’s complex-valued matrix and an associated real-
valued matrix, which we analyze via application of the Real
Schur Decomposition. This relationship enables an alternative
algorithm to the one proposed in [4]. Our proposed algorithm
uses less computation and asymptotically less memory, while
provably preserving solution quality. Additionally, it can be
easily implemented using standard computational building
blocks, possesses better numerical properties, and loans itself
to a natural interpretation via an objective function relaxation
argument. Lastly, we empirically demonstrate these advantages
on both synthetic and real world data. In the later case it is
demonstrated that the method can find meaningful flow-based
cluster structures.

The paper is organized as follows: in Section II we estab-
lish notation, review relevant background, and review prior
work on complex-valued digraph matrices. In Section III the
algorithm is derived using the aforementioned algebraic rela-
tionship and motivated using a heuristic relaxation argument
which aides in the interpretability of the method. Finally, in
Section IV we present experimental results on the DSBM and



Symbols Meaning Symbols Meaning
E Edge set Re(·) Real part
V Vertex set Im(·) Imaginary part
n Number of vertices ⊕ Direct matrix sum

[A]+ Proj. to nonnegative orthant A A set, Euler script
i =

√
−1 Complex unit A A matrix, bold-uppercase

ET =
[
I 0

]
Truncation matrix a A vector, bold-lowercase

1 Vector of all ones | · | Absolute value or cardinality
AT Transposition M Directed Graph Adj.
Ā Complex conjugation H Purely Hermitian Adj.

A∗ = Ā
T Conjugate Transpose K Real Skew-Symmetric Adj.

∥ · ∥F Frobenius norm ∥ · ∥2 2-norm

TABLE I: Notation

Food Web data sets.

II. PRELIMINARIES

a) Definitions and notation: We use a ∈ C to denote
scalars, a ∈ Cn for vectors, A ∈ Cm×n for matrices, A

for sets, and the superscripts T and ∗ for transposition and
conjugate transpose, respectively. A directed graph or digraph
G = (V,E) is a set of vertices V and a set E of ordered pairs of
vertices, called edges. We assume a digraph is accompanied
by an edge-weighting function w : E → R≥0, and denote
the weight of edge (u, v) by wuv . Further, if (u, v) ∈ E,
we sometimes write u → v. If the digraph does not contain
reciprocal edges, meaning (u, v) ∈ E implies that (v, u) ̸∈ E,
then we call the digraph an oriented graph. A k-partition of
the vertex set of a graph is a set of non-empty, disjoint sets
{A1, · · ·Ak} such that

⋃k
j=1 Aj = V. The directed adjacency

matrix associated with G is M ∈ Rn×n, where Muv = wuv if
u → v ∈ E and 0 otherwise. We frequently abuse notation by
using vertex and cluster symbols as indices, e.g. Muv = wuv

as stated in the previous line. We use n = |V| and as a general
positive integer, for example a square matrix A ∈ Cn×n. For
ease of reference and other notation, we provide Table I.

b) Linear Algebra: Some basic but relevant results in
linear algebra, of which we make frequent use are as follows.
A normal matrix B ∈ Cm×m has an eigenvalue decom-
position B = U∗ΛU, where Λ ∈ Cm×m and diagonal
and U ∈ Cm×m is unitary so UU∗ = I. We enforce
that Λ = diag(λ1, · · · , λm) where |λi| ≥ |λj | if i ≤ j.
All eigenvalues of a Hermitian matrix are real. A matrix K
where −K = KT is called skew-symmetric and real skew-
symmetric if K ∈ Rn×n. If K is real skew-symmetric all
its eigenvalues are either 0 or purely imaginary of the form
αi where α ∈ R. If (αi,x) is an eigenpair of K so its
(αī, x̄). The direct sum of a set of matrices is written as
B = B1 ⊕ B2 ⊕ · · · ⊕ Bm = diag(B1, · · · ,Bm), where
B ∈ Cn×n, Bj ∈ Cnj×nj , and

∑m
j=1 nj = n.

A. Complex-valued digraph matrices

Researchers have introduced a variety of different complex-
valued adjacency matrices for studying digraphs, utilizing
them for different purposes. Liu and Li [15] proposed a
Hermitian adjacency matrix A where Auv = 1 if (u, v) ∈ E

and (v, u) ∈ E, i if (u, v) ∈ E and (v, u) ̸∈ E, −i if (u, v) ̸∈ E

and (v, u) ∈ E and 0 otherwise.
Their motivation for proposing this matrix is that it encodes

the directionality of the digraph while possessing strictly real

eigenvalues. This enabled a meaningful definition of Hermitian
energy of digraphs for applications in theoretical chemistry
for computing the π-electron energy of a conjugated carbon
molecule [15]. Concurrently, Guo and Mohar [14] proposed
the same matrix for the purposes of establishing a basic
spectral theory of digraphs. Later, Mohar [11] proposed a
modification of the matrix, identically defined except that
the complex unit i is replaced with a sixth root of unity
ω = (1 + i

√
3)/2. ω is chosen due to the fact that ω · ω̄ =

ω + ω̄ = 1, which ensures the matrix encodes combinatorial
properties of digraphs, such as Ak counting directed walks of
length k. In Mohar’s work and others, the choice of complex
number is a parameter used to define the matrix, and is left
to the user. For instance, in the q-adjacency matrix used to
define magnetic Laplacian [13], the parameter q controls the
choice of complex number in polar form. Taking q = 1/4 and
q = 1/6 yields matrices almost identical to the aforementioned
matrices, respectively, differing only in that non-reciprocal
edges are weighted by a factor of 1/2.

For this work, we focus on a related, but simplified complex-
valued digraph adjacency matrix using the imaginary unit i
which is used by Cucuringu et al. [4]. This matrix H ∈ Cn×n,
most properly defined for weighted, oriented digraphs, is given
element-wise by

Huv =


wuv · i if u → v

−wvu · i if v → u

0 otherwise
(1)

Clearly H is Hermitian by definition. While defined for
oriented graphs, this matrix can be naturally applied to general
digraphs by replacing any pair of reciprocal edges between u
and v with a single edge (u, v) having weight wuv − wvu if
wuv ≥ wvu.

B. Imbalanced Cuts
Cucuringu et al. [4] use the matrix H as the adjacency

matrix of an oriented graph. Via a statistical argument based
on a proposed Directed Stochastic Block Model (DSBM)
the authors argue that the eigenvectors of H can recover
flow-based clusterings. The proposed DSBM is designed such
that digraphs generated from it are expected to have large
‘imbalanced cuts’ between them. That is, cuts where most of
the edges are oriented from one cluster to the other and few in
the reverse direction. To measure the quality of a cut [4] uses
a quantity called the Cut Imbalance (CI), which is defined as:

CI(X,Y) =
w(X,Y)

w(X,Y) + w(Y,X)
, (2)

where X,Y are a partition and w(X,Y) =
∑

u∈X,v∈Y Muv ,
i.e., the sum of edges oriented from X to Y. One can see
that a large CI(X,Y) value means that most of the edges are
oriented from X to Y, a small CI value means most edges are
oriented from Y to X and a CI value close to 1

2 means that the
cut is balanced in the sense that w(X,Y)−w(Y,X) is close to
0. In order to make this a maximization problem, the equation
|CI(X,Y)− 1

2 | is considered instead.



Algorithm 1 Hermitian Clustering (Herm)

input: A directed graph and desired number of clusters k.
Construct H ∈ Cn×n as described by Eqn. 1
Assign l = k if k is even and l = k − 1 if k is odd
Compute the l largest magnitude eigenvalues and
their corresponding eigenvectors of the matrix H
{(λ1,w1), · · · , (λl,wl)}
Compute P =

∑l
j=1 wjw

∗
j ∈ Rn×n

Compute a second EVD of P to obtain the matrix G ∈
Rn×l whose columns are the first l eigenvectors of P.
Run k-means on n rows of G with k clusters
return k vertex clusters

Cucuringu et al.’s statistical analysis of the DSBM bounds,
with a certain probability, the number of vertices misclassified
by their spectral algorithm. As previously mentioned, this
algorithm uses the eigenvectors corresponding to the largest
magnitude eigenvalues of H. However, Cucuringu et al. pro-
vide no direct connection between the CI, Eqn. 2, and their
spectral algorithm. Algorithm 1 presents details of this spectral
algorithm, which we refer to as Hermitian Clustering (Herm).

III. PROPOSED ALGORITHM

We now motivate and derive our proposed algorithm. First
we discuss aspects of Hermitian Clustering, highlighting prop-
erties of the matrix H which the algorithm utilizes. Then,
we explore some matrix decompositions related to H. From
these matrix decompositions and their relationships, we derive
a new, improved clustering algorithm and motivate its appli-
cability to flow-based clustering using a relaxation argument.

A. Motivation

Observe the matrix H ∈ Cn×n utilized in Algorithm 1 is
not only Hermitian but also skew-symmetric. Further, given
any digraph with adjacency matrix M ∈ Rn×n, H may be
written as H = iK = i(M−MT) where K = (M−MT) ∈
Rn×n is real skew-symmetric. This implies that K and H
have the same eigenvectors and there is a relationship between
clustering based on H or K. Denote the Hermitian Eigenvalue
Decomposition (EVD) of H = WΛW∗. Then the EVD of
K is

K = W(̄iΛ)W∗. (3)

Note that while K is a real-valued matrix, its EVD requires
complex-valued matrices.

Algorithm 1 utilizes an even number of the leading eigen-
vectors of H to form a low-rank representation of a graph.
Specifically, the matrix W̃ = [w1, · · · ,wl] ∈ Cn×l is formed,
where wj is the jth column of W and l > 1 is an even
integer then k-means with k clusters is run on the product
P = W̃W̃

∗
. Due to the fact that if (λj ,xj) is an eigenpair

of K so is (−λj , x̄j), the matrix P = W̃W̃∗ ∈ Rn×n is real
valued. This means a standard k-means algorithm that takes
real valued input can be run on P.

However, the formation of P may cause computational
issues, despite having the desirable property of being real-
valued. First, the matrix P is of size n× n which is as large
as the input graph and is likely dense. Therefore running k-
means on and storing this P can be prohibitively expensive
for large problems. Second, P may incur additional numerical
issues due to the formation of the product, and in fact may
not be real valued [16]. This can be overcome in a number of
ways, for example by taking its real part and discarding the
residual imaginary components. In the next section we propose
a solution to these problems by observing some algebraic
relationships.

B. Algebraic Properties

The real, skew-symmetric matrix K ∈ Rn×n has a real-
valued Singular Value Decomposition (SVD) of the form K =
UΣVT where {U,Σ,V} ∈ Rn×n. Working with the SVD of
K is desirable due to the fact that computing it requires only
real arithmetic (unlike the EVD) and reliable algorithms and
software are readily available for its computation. Here we
will follow this idea of using the SVD in place of the EVD.

The derivation of our algorithm relies on properties of
the Real Schur Decomposition (RSD) of K [16]. The Schur
Decomposition (SD), as opposed to the RSD, decomposes
an arbitrary matrix B ∈ Cn×n into B = Q̂RQ̂

∗
where

Q̂ ∈ Cn×n, Q̂Q̂
∗
= I, and R ∈ Cn×n is upper triangular.

We emphasize the EVD and SD are different in general. Even
for a real matrix, A ∈ Rn×n, its SD A = Q̂RQ̂

∗
consists

of a unitary matrix Q̂ ∈ Cn×n and an upper triangular matrix
R ∈ Cn×n which is also complex in general. Alternatively,
the RSD of a matrix A ∈ Rn×n is A = QTQT where
Q ∈ Rn×n, QTQ = I, and T ∈ Rn×n, where T is block
upper triangular with either 2 × 2 or 1 × 1 blocks on the
diagonal, instead of being upper triangular.

Returning now to K, since this matrix is real skew-
symmetric, its RSD

K = QTQT (4)

has a special form [17], where Q ∈ Rn×n, QTQ = I ,
and T = T1 ⊕ · · · ⊕ Tb ∈ Rn×n is block diagonal with
b diagonal blocks of size 1 × 1 or 2 × 2. Since all nonzero
eigenvalues of K are purely imaginary, and appear in ± pairs,
one may assume that K has 2s non-zero eigenvalues and each
± pair of the 2s eigenvalues appears in a block Tj ∈ R2×2

for j = 1, . . . , s, Tt = 0 ∈ R1×1 for t = (2s + 1), . . . , b.
We may further assume that each block Tj has the form
Tj =

[
0 αj ;−αj 0

]
whose eigenvalues are αji and −αji,

and the blocks Tj are ordered in non-increasing order by |αj |
and αj > 0. These real Schur vectors can be easily used to
construct eigenvectors. Observe that

K
[
q2j−1 q2j

]
=

[
q2j−1 q2j

] [ 0 αj

−αj 0

]
=

[
−αq2j αq2j−1

]
,

and K(q2j−1+iq2j) = −αq2j+iαq2j−1 = iα(q2j−1+iq2j),
so (q2j−1 + iq2j) is an eigenvector of K, and therefore also
of H.



Generalizing this observation define J = J1 ⊕ · · · ⊕ Jb ∈
Cn×n, where Jj = 1√

2

[
1 − i; 1 i

]
∈ C2×2 for j =

1, . . . , s, and Jt = 1 ∈ R1×1 for t = (2s + 1), . . . , b. Then
JTJ∗ = īΛ, since Jj , for j = 1, . . . , s, unitarily diagonalizes
Tj , as JjTjJ

∗
j =

[
−αj ī 0; 0 αj ī

]
. Therefore, we have

K = QTQT = (QJ∗)(̄iΛ)(JQT) = W(̄iΛ)W∗, (5)

an EVD of K where W = (QJ∗). This shows a relationship
between the eigenvectors W in Eqn. 3 and the real Schur
vectors Q in Eqn. 4 of K.

We are now ready to discuss our first main proposition
which enables our proposed algorithm.

Proposition 1. Let Q̃ = QE ∈ Rn×l, where E ∈ Rn×l is
a truncation matrix whose l columns are the first l columns
of the identity matrix of order n, l is a positive even integer
≤ 2s. Assume that K has 2s non-zero eigenvalues. Then the
embedding Q̃ has the same Euclidean distances between all
pairs of vertices as the embedding P = W̃W̃

∗ ∈ Rn×n.

Proof. Assume that a set of d points are collected as the rows
of a matrix Y ∈ Rd×f as yT

1 , · · · ,yT
d , where f is the number

of features. Then the Euclidean distance matrix [18] of Y,
∆(Y) whose (i, j)th element is the L2-norm distance between
row i and row j, (∆(Y))ij = ∥yi − yj∥22, is defined as

∆(Y) = 1 diag(YYT)T − 2YYT + diag(YYT)1T.

Since

(W̃W̃
∗
(W̃W̃

∗
)T)T = (W̃W̃

∗
W̃W̃

T
) = (W̃W̃

∗
W̃W̃

∗
)

= (W̃W̃
∗
W̃W̃

∗
) = W̃W̃

∗
= QJ∗E(QJ∗E)∗

= QJ∗EETJQT = Q̃Q̃
T

(6)

we have ∆(W̃W̃
∗
) = ∆(Q̃).

Proposition 1 implies an equivalent but simplified version
of Algorithm 1. That is, compute the embedding Q̃ from K
and run k-means on it. Since both embeddings have the same
Euclidean distances between vertices it can be expected that
the algorithms produce the same result. A small issue that we
now address is the use of the RSD.

Proposition 2. The embedding Q̃ = QE ∈ Rn×l can be
obtained from the Singular Value Decomposition of K.

Proof. Define the matrix Z = Z1 ⊕ · · · ⊕ Zb, which has the
same block structure as T, where Zj = [0 − 1; 1 0] for
j = 1, · · · , s and Zt = 1 for t = (s+ 1), · · · , b. Note that Z
is orthogonal. Then

K = QTQT = Q(TZ)(ZTQT), (7)

which is an SVD of K where U = Q, Σ = TZ, and V =
QZ. The columns of Q̃ can be obtained from U or V.

As a result of Proposition 2, the embedding Q̃ can be easily
obtained from computing the SVD of K using a readily avail-
able high quality implementation. Algorithm Skew-F presents
the psuedo code of our main algorithm, which we call Skew-
Symmetric Clustering.

a) SVD-Search Algorithm: Since the number of
eigen/singular vectors to take is an open question. We
propose searching for a large ‘gap’ in the eigen/singular
values and using all the pairs above the gap. Empirically
we find that this method significantly outperforms Hermitian
Clustering and standard Skew-Symmetric Clustering on
the graphs generated by certain inputs for the DSBM.
Additionally, we experiment with manual inputs of the
parameter l. Results in Section IV show that determining an
appropriate l has a large impact on the embedding quality.

Algorithm Skew-F Skew-Symmetric Clustering (Skew-F)

input: A digraph adjacency matrix M ∈ Rn×n and desired
number of clusters k.
Construct K = M−MT.
Let l = k if k is even and l = k − 1 if k is odd
Compute a truncated SVD of K = ŨΣ̃Ṽ

T
where

{Ũ, Σ̃, Ṽ} ∈ Rn×l

Run k-means on Ũ for k clusters
return k vertex clusters

C. Trade Flow and Skew-Symmetric Clustering

We now present a connection between our Skew-Symmetric
Clustering algorithm and an intuitive cluster-quality metric
called Trade Flow. Recall Eqn. 2 defines the Cut Imbalance
(CI). Although [4] does not explicitly tie CI to Algorithm 1,
the authors utilize this metric to evaluate the cluster quality
of their methods on real world datasets where no ground truth
was available. In place of the CI, we consider the Trade Flow
(TF) metric for measuring imbalanced cuts, as proposed by
Laenen [19]:

TF(X,Y) = |w(X,Y)− w(Y,X)|. (8)

In the context of finding clusters with large imbalanced cuts
the goal is to maximize TF(X,Y) over the vertex partition X

and Y. Clearly, the TF is similar in spirit to the CI. A large
value of TF, Eqn. 8, means that more edge weight is oriented
from one cluster to the other than vice versa. A small value
means that the cut is relatively balanced and thus by attempting
to maximize Eqn. 8 one expects to obtain clusters with large
imbalanced cuts between them. In fact a relationship can be
seen between CI and TF as

|CI(X,Y)− 1

2
| = 1

2
·
∣∣∣w(X,Y)− w(Y,X)

w(X,Y) + w(Y,X)

∣∣∣ = 1

2
· TF(X,Y)
|w(X,Y) + w(Y,X)|

Now we present a heuristic, relaxation argument for why
Skew-Symmetric Clustering can be expected to recover large
imbalanced cuts. Specifically, we will show that when k = 2
our method can be viewed as maximizing Eqn. 8 by relaxing
the problem over the reals. We note the TF problem for k =
2 is solvable in linear time but for k ≥ 3 is NP-hard [19].
This relaxation is not meant as an improved algorithm but to
connect the above methods to a reasonable objective function.

Consider two indicator vectors for the partition X and Y

denoted eX and eY, where (eX)u = 1 if vertex u ∈ X and 0



otherwise. Given a digraph we can write the TF in terms of
the adjacency matrix M as

TF(X,Y) = |w(X,Y)− w(Y,X)| = |eTXMeY − eTYMeX|
= |eTXKeY|

Using the above observation we can then write the TF maxi-
mization problem as

max
X,Y

TF(X,Y) = max |eTXKeY| s.t. {eX, eY} ∈ {0, 1}n

and eTXeY = 0 (9)

Relaxing this problem by allowing eX and eY to take on
arbitrary real values we can instead consider the problem as

max |aTXKbY| s.t. ∥aX∥ = ∥bY∥ = 1, {aX,bY} ∈ Rn,

and aTXbY = 0 (10)

Where the norm constraint deals with scaling and the orthog-
onality constraint takes the place of X ∩ Y = ∅.

Proposition 3. Skew-Symmetric Clustering solves Equation
10. Therefore Skew-Symmetric Clustering can be viewed as
solving a relaxation of Equation 9, the Trade Flow maximiza-
tion problem.

Proof. Consider the maximization problem in Eqn. 10, it is
well known for an arbitrary matrix B the quantity xTBy is
maximized by setting x to equal the first left singular vector of
B and y to equal the first right singular vector of B, assuming
∥x∥ = ∥y∥ = 1. This is exactly what Skew-Symmetric
Clustering does. Additionally since K is a real valued matrix
its singular vectors are chosen to be real.

Next consider the orthogonality constraint, aTXbY = 0. In
general one does not expect the first left and right singular
vectors of a matrix to be orthogonal. From Section III-B we
know one can write K = QTQT = Q(TZ)(ZTQT) using
its RSD. As previously discussed this can be viewed as an
SVD of K where K = UΣVT where U = Q, V = QZ and
TZ = Σ. It then follows that VTU = ZTQTQ = ZT and
eT1U

TVe1 = uT
1v1 = eT1Ze1 = 0.

IV. EXPERIMENTS

In this section we examine the empirical performance of
our algorithms versus existing methods. First, we demonstrate
our methods performance on synthetic data generated from
the DSBM. In particular, we consider three different ways
of generating the DSBM and include thorough experimental
results for each. Second, we explore our methods effectiveness
when applied to real world data. We consider the following
algorithms:

1) Hermitian Clustering (Herm) see Algorithm 1.
2) Skew-Symmetric Clustering Full (Skew-F) see Algo-

rithm Skew-F.
3) Skew-Symmetric Clustering Reduced (Skew-R) which

is the same as Skew-F but takes in a user specified
parameter l.

4) Skew-Symmetric Clustering Search (Skew-S) as in Al-
gorithm Skew-F but modified as described in Section
III-B0a. That is the gap in the singular values is used to
determine l.

5) DD-Sym computes S = MMT + MTM and uses the
top k-eigenvectors to cluster via k-means [20]. It was
one of the top performing algorithms compared against
1 in [4].

6) Block Cyclic Clustering (BCS) uses elements of Perron
Frobenius theory to compute a vertex embedding from
the row normalized adjacency matrix [5].

7) SVD-M computes d left and right singular vectors of
the adjacency matrix M ≈ ÛΣ̂V̂

T
, forms them into an

embedding as [ÛΣ̂
1/2

, V̂Σ̂
1/2

], and applies K-means to
extract clusters [21]. We set d = k.

Algorithm BCS Block Cyclic Spectral Clustering (BCS)

input: A directed, strongly connected graph adjacency ma-
trix M ∈ Rn×n and desired number of clusters k.
Construct P = D−1

outM where Dout = diag(M)1
Compute l = ⌊k

2 ⌋
Compute the l largest eigenvalues λ1, · · · , λl of P with
largest absolute value that satisfy λ ∈ C : Re(λ) <
1, Im(λ) ≥ 0 and the associated right eigenvectors
u1, · · · ,ul

Collect the vectors into the matrix Γ = [u1, · · · ,ul] ∈ Cn×l

Run k-means for k clusters on the matrix [Re(Γ), Im(Γ)]
return k vertex clusters

We note there are also normalized variants of the above
algorithms, which we utilize later in Section IV-C. For com-
pleteness, we also note Laenen and Sun [7] give an algorithm
for the circulant case of the DSBM, see Section IV-A. All
algorithms we consider are generally applicable and not re-
stricted to the circulant case.

Algorithm DD-Sym Bibliometric Clustering (DD-Sym)

input: A directed graph adjacency matrix M ∈ {0, 1}n×n,
desired number of clusters k, and 0 ≤ α ≤ 1
Compute A = αMMT + (1− α)MTM
Compute the first k leading eigenvectors of A and collect
them in the matrix B
Run k-means for k clusters on the matrix B
return k vertex clusters

a) Cut Metrics: To evaluate cluster quality, we utilize
several multi-way cut objectives suitable for partitions with
k ≥ 2 clusters. First, we use an extension of CI metric (Eqn.
2), defined in [4] as:

TopCIvol(A1, · · · ,Ak) =

c∑
t=1

CIvol(Ajt ,Aht
) (11)

where CIvol(Ajt ,Aht) is the t-th largest CIvol pair of clusters,
CIvol(X,Y) = |CI(X,Y) − 0.5| ∗ min(vol(X), vol(Y)), and



vol(X) is the sum of all in and out degrees of vertices in X.
A related metric, TopCIsz is defined by using the cardinality
of a cluster in place of its volume in Eqn. 11. Secondly, for
the TF metric (Eqn. 8) with k ≥ 2, we have

TopTF(A1, · · · ,Ak) =

c∑
t=1

TF(Ajt ,Aht
) such that jt ≥ ht,

(12)
where, similar to the above, TF(Ajt ,Aht

) is the t-th largest
TF pair of clusters. In both equations c is the number of cuts
considered.

A. Directed Stochastic Block Model Experiments

In our first set of experiments, we utilize the Directed
Stochastic Block Model (DSBM) proposed in [4]. The DSBM
is based on the inputs (k, p, q, c,F), where k denotes the
number of clusters, p the probability that two vertices in the
same cluster have an edge between them, q the probability
that two vertices in different clusters have an edge between
them, c a vector of length k whose entries are the number of
vertices in each cluster, and the matrix F ∈ Rk×k which gives
cluster level orientation probabilities. That is if u is in cluster
a and v is in cluster b then u → v exists with probability
Fa,b. All diagonal entries of F are equal to 1

2 . The graph
corresponding to the entries of F is called the meta-graph of
a graph generated from this DSBM.

We utilize the following parameter settings: following [4]
we set p = q so that only the number of edges between clusters
is expected to contain meaningful statistical information about
the cluster memberships. We vary p = 0.0045, 0.008, set
n = 5000, k = 5, and assign each cluster 1000 vertices.
Further, we vary a noise parameter 0 ≤ µ < 0.5 controlling
the difficulty of recovery: if cluster i is oriented to cluster j,
then Fij = 1− µ and Fji = µ. In this way, as µ approaches
0.5 the number of edges between clusters becomes random
in expectation, making cluster recovery increasingly difficult;
we consider 11 different µ values ranging from 0 to 0.3. We
evaluate cluster quality using both the Adjusted Rand Index
(ARI) [22] and TopTF (Eqn. 12), with an appropriate value
of c. Under this setup, we consider three versions of DSBM,
differing with regard to the structure of F.

• Circulant DSBM. Here, the matrix F is circulant. This
specific meta-graph model has received attention in recent
work [4], [5], [7] because it is a natural pattern of interest,
and because it affords tools from the spectral theory of
(block) circulant matrices, as well as Perron-Frobenius
theory. Figure 1 present the results. The best performing
algorithms are Hermitian Clustering and the two Skew-
Symmetric Clustering algorithms. We note for the Skew-
R algorithm we set l = 1, and for TopTF computation
we set c = k, as this is the number of meaningful cuts
expected to be found.

• Directed Acyclic DSBM. Here, the meta-graph resembles
a Directed Acyclic Graph (DAG). This case is motivated
by the fact that matrices F constructed from DAGs
have nonzero θ-distinguishing images – a requirement

necessary for graphs generated by DSBM to statistically
recoverable; see [4] for more. For our experiments we
choose the DAG where the matrix Fuv = µ if v = u+1
or v = u + 2, Fuv = 1 − µ if v = u − 1 or v = u − 2,
and Fuv = 1/2 otherwise. That is, the meta-graph is
characterized by the first two lower and upper diagonals
of F. Figure 2 present the results. When computing
TopTF we set c = 2(k − 1), and again set l = 1 for the
Skew-R algorithm. Results for this model are quite good
for the SVD-R algorithm. As was the case for Circulant
DSBM, the choice of l significantly impacts the results.

• Complete Meta-Graph DSBM. In the CMG model [4], F
is generated by randomly orienting the flows between
clusters, and setting all entries of F, except for the
diagonal, to either µ or 1 − µ. Figure 3 present the re-
sults. Skew-S significantly outperforms Herm and Skew-
F in ARI, and slightly in terms of TopTF scores. This
demonstrates a static choice of the number of eigen or
singular vectors, l, is not the most effective technique.
Moreover, this suggests optimal choice of l depends on
the meta-graph pattern considered, rather than simply a
function of the number of clusters. Lastly we note that
the variance for these experiments is quite high. This is
likely due to the fact that at each µ value ARI or TopTF
scores from graphs with different F’s are being averaged.

B. Computational Costs

The computational complexities of the various algorithms
are not readily apparent from the given pseudo-code. In
particular the complexity of the Herm algorithm was not
thoroughly discussed in [4] and in fact some erroneous claims
about its efficiency in comparison to other methods were made.
Here we discuss and make clear the computational costs of
Skew-Symmetric Clustering, Hermitian Clustering, and DD-
Sym. Each of these algorithms relies on computing the top
O(k) eigenpairs of a sparse matrix. The efficient way to do this
is to use an iterative Lanczos-type method [16]. The Lanczos
method is iterative and does not require direct access to the
matrix, say A ∈ Cn×n, but only access to a linear function
f(x) = Ax that represents the action of A on a vector
x ∈ Cn. A full discussion of the complexity of the Lanczos
method is beyond the scope of this work. For our purposes we
consider the complexity as O(nnz(A)qmax), where nnz(A)
denotes the number of nonzero entries of A and qmax is the
number of Ax evaluations needed. This functionality is readily
available in MATLAB and the python package Scipy via the
eigs() function.

a) Complexity Analysis: In Skew-Symmetric Clustering,
k-means is run on Q̃ ∈ Rn×l yielding a computational
complexity of O(tmaxk

2n), where tmax is the maximum
number of k-means iterations. Additionally computing Q̃ via
Lanczos costs O(nnz(Z)qmax). Skew-Symmetric Clustering’s
storage complexity is O(nnz(K) + nl). Additionally, we note
that only l singular vectors are needed in Skew-Symmetric
Clustering even though typically it takes 2l real dimensions to
capture l complex ones.



Fig. 1: ARI and TopTF results for the Circulant DSBM experiments.

Fig. 2: ARI and TopTF results for the DAG DSBM experiments.

Herm, Algorithm 1, computes the embedding P = WW∗

at a cost of O(nnz(H)qmax) and O(n2k) for the matrix
multiply and the EVD. Then it computes P = GGT, an
EVD of P, where G ∈ Rn×l. Computing this explicitly,
forming P directly and computing its eigenvalues, leads to
a second costly EVD. Lastly k-means is run on G for
cost O(tmaxk

2n). The cost of computing G in this way is
O(n2qmax). Therefore we see that Hermitian Clustering is
more computationally more expensive than Skew-Symmetric
Clustering. Additionally, forming P requires O(n2) memory,
asymptotically more than Skew-Symmetric Clustering, which
is infeasible for large problems. We note that many of these
problems can be fixed by implementing Herm differently using
a modified Lanczos method [16]. One can use the efficient
matrix vector product z = (W(W∗x)) and project z to
be real at each iteration instead of computing G from P.

This is not done in the previous work. We note without
this projection step, we empirically observe that the Lanczos
method will return a set of numerically-valid eigenvectors
with large complex components thus failing the alleviate the
original problem. For intuition as to why this occurs, note that
all the columns of W are valid eigenvectors of P.

While using this modified Lanczos procedure brings the
asymptotic complexity of Herm inline with that of Skew-F, in
practice Skew-F remains faster. This is due to constants, for
example requiring only one SVD/EVD computation, a smaller
embedding dimension, and using only real arithmetic. It is also
claimed that the embedding U is ‘analogous’ to W but this
is not rigorously justified [4]. In fact, via our analysis above
one can straight forwardly prove that the singular vectors of
K give a valid set of columns for U.

Lastly, it is claimed, and supported with timing data that, in



Fig. 3: ARI results for the CMG DSBM experiments.

Alg. Embedding Kmeans SpeedUp
Herm 5.15 0.99 1
Skew 2.18 0.87 2
BCS 2.17 0.97 1.95
DD-Sym 1.04 1.08 2.9
SVD-M 1.26 1.39 2.3

TABLE II: Timings, in seconds, for Cyclic DSBM with n =
10, 000, k = 10, and p = 0.008. Values are averages over 50
runs on 10 different graphs (5 runs per graph). Speed up is
relative to the Herm algorithm.

[4] that the Herm Algorithm is significantly faster than DD-
Sym due to the fact that DD-Sym requires the matrix products
MMT+MTM. However, by using the Lanczos method with
f(x) = M(MTx)+MT(Mx) this criticism no longer holds.
In fact our timing experiments in Table II show DD-Sym is
more efficient than Herm on a DSBM with n = 10, 000.

b) Timing: We now consider timing results for a DSBM
with parameters k = 10, n = 10, 000, p = 0.008 and circulant
F. Table II has 3 columns : 1) Embedding (Emb.): the time
spent selecting and computing the appropriate eigenvectors or
singular vectors, 2) K-means: time spent running the k-means
algorithm and 3) speed up relative to Hermitian Clustering.

All algorithms were run on a computer with a 2.3 GHz
Quad-Core Intel Core i7 processor and 32GB memory, with
matrices stored using MATLAB’s sparse matrix format, and
utilizing MATLAB’s kmeans(), eigs() and svds() functions.
MATLAB was given access to all 4 CPUs during the experi-
ments.

We observe the Hermitian Clustering algorithm runs the
slowest. This result is in contrast to previous timing results
showing that Herm was roughly 2× faster than DD-Sym [4].

Summarizing the DSBM experiments, Skew-Symmetric
Clustering algorithms tend to perform the best, along with
Hermitian Clustering, in terms of TopTF and ARI. This is
congruent with Proposition 1 and results from [4]. Addition-

ally, the Skew-Symmetric Clustering algorithm is cheaper in
terms of memory consumption and computational cost than
Hermitian Clustering. Skew-Symmetric Clustering’s run time
is comparable to the other methods and about 2× faster than
Herm. Lastly, we provided empirical evidence that the choice
of l often has a significant impact on the performance of the
algorithm.

C. Experiments on Real Data

Next, we test the performance of our algorithms on several
food web datasets. We utilize normalizations which can often
improve results on real-world data. Note that normalization
is unnecessary for DSBM experiments, since vertices in the
same clusters have the same expected value of edge degree.
Random walk normalization is used in [4] and is written
as Hrw = D−1H, where Duu =

∑
v |Huv|. One may

analogously normalize K which we denote as Krw.
a) Florida Bay Food Web: The Florida Bay Food Web

(FBFW)1 is a data set containing information about carbon
exchange between species in South Florida Ecosystems. In this
digraph an edge u → v might mean species v eats species u.
The graph contains 128 vertices and 2106 edges. We treat the
graph as unweighted.

This data set has been analyzed quite extensively [5], [6],
[23], and it is worth reviewing prior analyses to place ours
in context. Benson et al. [23] use the FBFW to demonstrate
the effectiveness of spectral motif clustering. Their clustering
results separate out a number of interesting within-cluster
dynamics. Li and Milenkovic [6] also used a spectral motif
clustering approach in the context of their proposed inho-
mogenous hypergraph clustering problem. Their choice of
motif resulted in finding 5 clusters where most of the edges
are oriented between clusters, thus revealing the hierarchical
structure present in the graph. The clusters in this hierarchical

1http://vlado.fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm



Fig. 4: Cut scores on the FBFW for k = {3, 4, 5, 6}. Bars
corresponding to each metric are normalized by the highest
achieved mean score so that all mean scores are between 0
and 1. Each bar’s height is the mean over 100 runs and error
bars give 1 standard deviation in each direction.

Fig. 5: Plot of vertices and edges for the Skew-RW clustering
with k = 5 clusters on the 118 vertex subgraph from Li and
Milekovic [6]. Edges oriented against the cluster hierarchy are
in red and all other edges are in blue. The cluster hierarchy
is red → magenta → green → blue → yellow. The matching
bottom left graph, gives the cluster level orientations of edges.
We label 3 clusters which exhibit consistent within cluster
species labels. l = 1 for this run. The shown cluster is the
best TopTF scorer over 100 runs.

structure are roughly interpretable as the trophic levels, or
cluster level predator-prey relationships. Due to the nature
of motif clustering Li and Milenkovic pruned the network
of 10 vertices corresponding to ‘singleton’ clusters (manatee,
kingfisher, hawksbill turtle, etc.) and detritus species. The
resulting sub-network consists of 118 vertices and 1714 edges.
Impressively, in their clustering only 5 edges are oriented from
higher to lower clusters in the found hierarchy.

Our method uncovers a similar hierarchical structure. Skew-
Symmetric Clustering with random walk normalization, Skew-

RW, and l = 1 gives the best results out of all methods
in terms of TopTF. All of the methods previously compared
against via the DSBM are able to operate on the full 128
vertices of the FBFW graph. However, for direct comparison
we generate Li and Milenkovic’s subgraph and compare their
reported clustering versus that returned by Skew-RW. Li and
Milenkovic’s clustering yields a TopTF score of 1536 meaning
that ≈ 89.6% of the 1714 edges are oriented between clusters
according to the hierarchy. Skew-RW yields a maximum
TopTF score of 1587, orienting about ≈ 92.6% of edges
between clusters according to the hierarchy. When computing
TopTF we take all cluster-cluster relations into account (setting
c in Eqn. 12).

The main difference between the Skew-RW clustering and
that of Li and Milekovic is that our clustering has fewer within
cluster edges, which of course do not contribute to the TopTF
score. The most prominent example of this is that Skew-RW
places the algae and seagrass species in the cluster lowest
in the hierarchy while Li and Milekovic places them in the
second lowest. In some sense, our clustering may be more
intuitive. For example the species Drift Algae and Epiphytes,
also an algae, have no incoming edges in the reduced digraph.
While placing these species in the second lowest cluster does
not introduce any edges oriented against the hierarchy, it does
result in more within cluster edges, lowering the overall TopTF
score. The clusters at the top of both hierarchies are identical.
This top cluster contains species such as sharks and dolphins.
We also note that our clustering orients 8 edges against the
hierarchy. Our clustering is visualized in Figure 5.

Figure 4 presents cut score results for k = {3, 4, 5, 6}. The
methods which utilize the matrices H and K are generally
most successful across all 3 computed cut metrics. Observe
that Skew-R (l = 1) and Skew-RW (l = 1) are consistently
two of the best performing algorithms in terms of cut scores.
Running these algorithms with k > 6 did not increase,
and often decreased, TopTF scores. DD-Sym-N refers to a
normalized version of DD-Sym, see Satuluri and Parthasarathy
[20] for details.

b) Other Food Webs: We briefly present results for two
other food webs: Mangrove Wet Season and Cypress Dry
Season, which are originally Pajek datasets2. Visualizations
of output clusterings that achieve the highest TopTF score
for the Hermitian Clustering algorithm with random walk
normalization (Herm-RW) can be seen in Figure 6a and Figure
6b. The Herm-RW algorithm gives on average the highest
TopTF scores for both of these graphs but the Skew algorithm
is also able to recover the clustering which yields the highest
found TopTF score. Again we observe that the method is able
to uncover a clustering structure, with k = 6, that yields a high
TopTF score and appears to reveal a cluster level hierarchical
structure.

V. CONCLUSION

We have explored the role of complex-valued adjacency
matrices for finding imbalanced cuts in directed graphs. Via

2http://vlado.fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm



(a) Visualization of the clustering
output by Hermitian Clustering
with random walk normalization
on the Mangrove (wet season)
data set. There are 16 edges, in-
dicated in bold red, which ac-
tively detract from the TF score
of 1104.

(b) Visualization of the cluster-
ing output by Hermitan Cluster-
ing with random walk normaliza-
tion on the Cypress Dry Season
graph. There are 10 edges ori-
ented against the majority flows.
Approximately 89% of the edges
contribute to the TF score of 472.

Fig. 6: Additional food web visualizations

a careful analysis of algebraic relationships we show that real
valued representation and algorithms which use real arithmetic
are not only possible but advantageous. Our algorithm, Skew-
Symmetric Clustering, is faster and requires asymptotically
less memory than the existing state of the art method. It has a
natural connection to a simple metric which captures the spirit
of imbalanced cuts. We demonstrate the algorithm’s ability to
find meaningful patterns in real world data and outperform
related methods on graphs generated from the DSBM.

In a broader sense we hope that this work will encourage
careful consideration of the role of complex-valued representa-
tions for graphs. While our work primarily focuses on algorith-
mic drawbacks of using complex-valued representations, there
are advantages for considering such matrices. For example
Cucuringu et al. [4] use the Davis Kahan Theorem [24] for
Hermitian matrices in their analysis and Laenen and Sun [7]
use the fact that Hermitian matrices are subject to the min-
max theorem. Some limitations of this work include focusing
on a single, specific complex-valued digraph matrix limited to
oriented graphs, the non-generality of the relaxation argument
with respect to k, and a further results on larger, real-world
graphs.
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