
Parallel Nonnegative CP Decomposition
of Dense Tensors

Grey Ballard and Koby Hayashi

Wake Forest University

Winston Salem NC 27109

Email: {ballard,hayakb13}@wfu.edu

Ramakrishnan Kannan

Oak Ridge National Laboratory

Oak Ridge, TN 37830

Email: kannanr@ornl.gov

Abstract—The CP tensor decomposition is a low-rank approx-
imation of a tensor. We present a distributed-memory parallel
algorithm and implementation of an alternating optimization
method for computing a CP decomposition of dense tensors
that can enforce nonnegativity of the computed low-rank fac-
tors. The principal task is to parallelize the Matricized-Tensor
Times Khatri-Rao Product (MTTKRP) bottleneck subcomputa-
tion. The algorithm is computation efficient, using dimension
trees to avoid redundant computation across MTTKRPs within
the alternating method. Our approach is also communication
efficient, using a data distribution and parallel algorithm across
a multidimensional processor grid that can be tuned to minimize
communication. We benchmark our software on synthetic as
well as hyperspectral image and neuroscience dynamic functional
connectivity data, demonstrating that our algorithm scales well
to 100s of nodes (up to 4096 cores) and is faster and more general
than the currently available parallel software.

I. INTRODUCTION

The CP decomposition is a low-rank approximation of a

multi-dimensional array, or tensor, which generalizes matrix

approximations like the truncated singular value decomposi-

tion. It approximates the input tensor by a sum of rank-one

tensors, which are outer products of vectors. CP is often used

for finding hidden patterns, or latent factors, within tensor data,

particularly when the goal is to interpret the factors, and it is

popular within the signal processing, machine learning, and

scientific computing communities.

To aid in interpretability, domain-specific constraints are

often imposed on the computed factors. We focus in this paper

on dense tensors (when nearly all of the tensor entries are

nonzero) and on constraining solutions to have nonnegative

entries, which is useful when the tensor data itself is nonneg-

ative. Formally, NNCP can be defined as

min
H(i)�0

∥∥∥∥∥A−
R∑

r=1

H(1)(:, r) ◦ · · · ◦H(N)(:, r)

∥∥∥∥∥
2

(1)
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where H(1)(:, i) ◦ · · · ◦H(N)(:, i) is the outer product of the

ith vector from all the N factors that yields a rank one tensor

M and
∑R

r=1 H
(1)(:, r) ◦ · · · ◦ H(N)(:, r) results in a sum

of R rank one tensors that will be of the same dimension as

the input tensor A. For example, in imaging and microscopy

applications, tensor values often correspond to intensities, and

NNCP can be used to cluster and analyze the data in a lower-

dimensional space [1]. In this work, we consider two such

applications: a series of time-lapse hyperspectral images [2]

and a dynamic functional correlation data set generated from

functional magnetic resonance images of human brains [3].

One approach to handling multidimensional data is to

“matricize” it, combining sets of modes to reshape the data

into a matrix, so that standard matrix methods like principal

component analysis or nonnegative matrix factorization can be

applied. While this approach can be effective in certain cases,

reshaping the data destroys multidimensional relationships

among entries that the matrix methods cannot recover. By

maintaining the tensor structure of the data, the low-rank

representations preserve these relationships, often producing

better and more interpretable results.

However, tensor methods are more complicated both math-

ematically and computationally. The kernel computations

within standard algorithms for computing NNCP can be for-

mulated as matrix computations, but the complicated layout of

tensors in memory prevents the straightforward use of BLAS

and LAPACK libraries. In particular, the matrix formulation of

subcomputations involve different views of the tensor data, so

no single layout yields a column- or row-major matrix layout

for all subcomputations. Likewise, the parallelization approach

for tensor methods is not a straightforward application of

parallel matrix computation algorithms.

In developing an efficient parallel algorithm for computing a

NNCP of a dense tensor, the key is to parallelize the bottleneck

computation known as Matricized-Tensor Times Khatri-Rao

Product (MTTKRP), which is performed repeatedly for each

mode of the tensor. The parallelization must load balance the

computation, minimize communication across processors, and

distribute the results so that the rest of the computation can

be performed independently. In our algorithm, not only do

we load balance the computation, but we also compute and

store temporary values that can be used across MTTKRPs

of different modes using a technique known as dimension
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trees, significantly reducing the computational cost compared

to standard approaches. Our parallelization strategy also avoids

communicating tensor entries and minimizes the communica-

tion of factor matrix entries, helping the algorithm to remain

computation bound and scalable to high core counts.
As we detail in the related work, the general techniques for

reducing computation and communication have been used in

similar contexts. The recomputation avoidance was proposed

in a sequential algorithm [4], the parallelization scheme was

proposed and analyzed for general tensors [?], and the algo-

rithm was implemented for 3D tensors [6].
We summarize our main contributions as follows:

• we present the first distributed-memory parallel imple-

mentation of NNCP algorithms for arbitrary-dimension

dense tensors,

• we optimize the use of dimension trees for dense tensors,

avoiding recomputation across multiple MTTKRPs,

• our parallel algorithm is communication optimal with a

carefully chosen processor grid,

• we demonstrate a performance improvement of up to

2.2× over the existing state-of-the-art parallel software on

3D tensors and efficient parallel scaling of up to 1771×
on 4096 cores.

II. PRELIMINARIES

A. Notation
Tensors will be denoted using Euler script (e.g., T), matrices

will be denoted with uppercase boldface (e.g., M), vectors will

be denoted with lowercase boldface (e.g., v), and scalars will

not be boldface (e.g., s). We use Matlab style notation to index

into tensors, matrices, and vectors, and we use 1-indexing. For

example, M(:, c) gives the cth column of the matrix M.
We use ◦ to denote the outer product of two or more vectors.

The Hadamard product is the element-wise matrix product and

will be denoted using ∗. The Khatri-Rao product, abbreviated

KRP, will be denoted with �. Given matrices A and B that are

IA×R and IB×R, the KRP K = A�B is IAIB×R. It can

be thought of as a row-wise Hadamard product, where K(j+
IB(i−1), :) = A(i, :) ∗ B(j, :), or a column-wise Kronecker

product, where K(:, c) = A(:, c)⊗B(:, c).
The CP decomposition of a tensor (also referred to as the

CANDECOMP/PARAFAC or canonical polyadic decompo-

sition) is a low-rank approximation of a tensor, where the

approximation is a sum of rank-one tensors and each rank-

one tensor is the outer product of vectors. We use the notation

A ≈ �H(1), . . . ,H(N)� =
∑R

r=1 H
(1)(:, r) ◦ · · · ◦H(N)(:, r)

to represent a rank-R CP model, where H(n) is called a

factor matrix and collects the mode-n vectors of the rank-

one tensors as columns. The columns of the factor matrices

are often normalized, with weights collected into an auxiliary

vector λ of length R; in this case we use the notation

�λ;H(1), . . . ,H(N)� =
∑R

r=1 λrH
(1)(:, r) ◦ · · · ◦H(N)(:, r).

A Nonnegative CP decomposition (NNCP) constrains the

factor matrices to have nonnegative values. In this work,

we are interested in NNCP models that are good approxi-

mations to A in the least squares sense. That is, we seek

minH(i)�0 ‖A−�λ;H(1), . . . ,H(N)�‖, where the tensor norm

is a generalization of the matrix Frobenius or vector 2-norm,

the square root of the sum of squares of the entries.

The nth mode matricized tensor denoted by A(n) is a In×
I/In matrix formed by organizing the nth mode fibers of a

tensor X with dimensions I1×...×IN (and I =
∏

In) into the

columns of a matrix. The Matricized-Tensor Times Khatri-Rao

Product or MTTKRP will be central to this work and takes

the form M(n) = A(n)K
(n), where K(n) is the Khatri-Rao

product of the all the factor matrices except H(n) defined as

K(n) = H(N) � · · · �H(n+1) �H(n−1) � · · · �H(1).

B. Block Coordinate Descent for NNCP

While there are multiple optimization methods to compute

NNCP, we will focus on a class of methods that use Block

Coordinate Descent (BCD), which is also known as the

nonlinear Gauss-Seidel method. In BCD, the variables are

partitioned into blocks, and each variable block is cyclically

updated to optimality with all other blocks fixed. For details on

the convergence properties and comparisons of BCD methods

for nonnegative matrix and tensor decomposition problems,

see [8]. We consider BCD methods for NNCP that choose the

entire factor matrices as the blocks, which is also often referred

to as Alternating Least Squares. In this case, every subproblem

is a linear nonnegative least squares problem. Formally, the

following problem is solved iteratively for n = 1 · · ·N :

H(n) ← argmin
H�0

∥∥∥S(n)HT −M(n)T
∥∥∥
2

F
,

where S(n) = K(n)TK(n), the Gram matrix of the Khatri-

Rao product of the fixed factor matrices. The number of outer

iterations to convergence is problem dependent but typically

ranges from 10s to 1000s.

Algorithm 1 shows the pseudocode for BCD applied to

NNCP. Lines 11, 12 and 14 compute matrices involved in the

gradients of the subproblem objective functions, and line 13

uses those matrices to update the current factor matrix.

The NLS-Update in line 13 can be implemented in different

ways. In a faithful BCD algorithm, the subproblems are solved

exactly; in this case, the subproblem is a nonnegative linear

least squares problem, which is convex. We use the Block

Principal Pivoting (BPP) method [8], [9], which is an active-

set-like method, to solve the subproblem exactly.

However, as discussed in [10] for the matrix case, there

are other reasonable alternatives to updating the factor matrix

without solving the subproblem exactly. For example, we

can more efficiently update individual columns of the factor

matrix as is done in the Hierarchical Alternating Least Squares

(HALS) method [11]. In this case, the update rule is

H(n)(:, r)←
[
H(n)(:, r) +M(n)(:, r)− (H(n)S(n))(:, r)

]
+

which involves the same matrices M(n) and S(n) as BPP.

Other possible BCD methods include Alternating Optimization

and Alternating Direction Method of Multipliers (AO-ADMM)

[12], [13] and Nestrov-based algorithms [14]. The parallel
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algorithm presented in this paper is generally agnostic to

the approach used to solve the nonnegative least squares

subproblems, as all these methods are bottlenecked by the

subroutine they have in common, the MTTKRP.

Algorithm 1 �H(1), . . . ,H(N)� = NNCP(A, R)

Require: A is I1 × · · · × IN tensor, R is approximation rank
1: % Initialize data
2: for n = 2 to N do
3: Initialize H(n)

4: G(n) = H(n)TH(n)

5: end for
6: % Compute NNCP approximation
7: while not converged do
8: % Perform outer iteration of BCD
9: for n = 1 to N do

10: % Compute new factor matrix in nth mode
11: M(n) = MTTKRP(A, {H(i)}, n)
12: S(n) = G(1) ∗ · · · ∗G(n−1) ∗G(n+1) ∗ · · · ∗G(N)

13: H(n) = NLS-Update(S(n),M(n))
14: G(n) = H(n)TH(n)

15: end for
16: end while
Ensure: A ≈ �H(1), . . . ,H(N)�

C. Parallel Computation Model

To analyze our algorithms we use the MPI model of

distributed-memory parallel computation, where we assume

a fully connected network. Sending a message of W words

from one processor to another costs α + βW , where α is

the latency and β to be the per word or bandwidth cost. In

particular, we will use collective communication over groups

of P processors, and we will assume the use of efficient

algorithms [15], [16]. An All-Reduce sums data initially

distributed across processors and stores the result of size W
redundantly on every processor. An All-Gather collects data

initially distributed across processors and stores the union

of size W redundantly on all processors. A Reduce-Scatter

sums data initially distributed across processors and partitions

the result across processors. The communication cost of each

of these collectives is α · O(logP ) + β · O(W (P−1)/P ).
Reduction operations also include a flop cost but we will omit

it because it is usually dominated by communication.

III. RELATED WORK

The formulation of NNCP with least squares error and

algorithms for computing it go back to [17], [18], developed

in part as a generalization of nonnegative matrix factorization

algorithms [19] to tensors. Sidiropoulos et al. [20] provide

a more detailed and complete survey that includes basic

tensor factorization models with and without constraints, broad

coverage of algorithms, and recent driving applications. The

tensor operations discussed and the notation used in this paper

follow Kolda and Bader’s survey [21].

Recently, there has been growing interest in scaling ten-

sor operations to bigger data and more processors in both

the data mining/machine learning and the high performance

computing communities. For sparse tensors, there have been

parallelization efforts to compute CP decompositions both on

shared-memory platforms [22], [23] as well as distributed-

memory platforms [24]–[26], and these approaches can be

generalized to constrained problems [13]. The focus of this

work is on dense tensors, but many of the ideas for sparse

tensors are applicable to the dense case, including parallel data

distributions, communication pattern, and techniques to avoid

recomputation across modes.

In particular, Liavas et al. [6] extend a parallel algorithm

designed for sparse tensors [25] to the 3D dense case. They

use the “medium-grained” dense tensor distribution and row-

wise factor matrix distribution, which is exactly the same

as our distribution strategy (see section IV-C2), and they

use a Nesterov-based algorithm to enforce the nonnegativity

constraints. Their code is publicly available, and we compare

our performance with theirs in section V. A similar data

distribution and parallel algorithm for computing a single

dense MTTKRP computation is proposed by Ballard, Knight,

and Rouse [?]. They prove that the algorithm is communi-

cation optimal, but they do not provide an implementation.

Another approach to parallelizing NNCP decomposition of

dense tensors is presented by Phan and Cichocki [27], but they

use a dynamic tensor factorization, which performs different,

more independent computations across processors.

The idea of using dimension trees (discussed in sec-

tion IV-A) to avoid recomputation within MTTKRPs across

modes is introduced in [4] for computing the CP decompo-

sition of dense tensors. It has also been used for sparse CP

[23], [26] and other tensor computations [24].

IV. ALGORITHM

A. Dimension Trees

An important optimization of the CP-ALS algorithm is

to re-use temporary values across inner iterations [4], [23],

[28], [29]. To illustrate the idea, consider a 3-way tensor X

approximated by �U,V,W� and the two MTTKRP compu-

tations M(1) = X(1)(W � V) and M(2) = X(2)(W � U)
used to update factor matrices U and V, respectively. The

underlined parts of the expressions correspond to the shared

dependence of the outputs on the tensor X and the third factor

matrix W. Indeed, a temporary quantity, which we refer to

as a partial MTTKRP, can be computed and re-used across

the two MTTKRP expressions. We refer to the computation

that combines the temporary quantity with the other factor

matrix to complete the MTTKRP computation as a multi-

tensor-times-vector or multi-TTV, as it consists of multiple

operations that multiply a tensor times a set of vectors, each

corresponding to a different mode.

To understand the steps of the partial MTTKRP and multi-

TTV operations in more detail, we consider X to be I×J×K

and U, V, and W to have R columns. Then m
(1)
ir =∑

j,k xijkvjrwkr =
∑

j vjr
∑

k xijkwkr =
∑

j vjrtijr, where

T is an I × J × R tensor that is the result of a partial

MTTKRP between tensor X and the single factor matrix W .
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{1, 2, 3, 4, 5}

{1, 2} {3, 4, 5}

{1} {2} {3} {4, 5}

{4} {5}

PM PM

mTTV mTTV mTTV mTTV

mTTV mTTV

Fig. 1. Dimension tree example for N = 5. The data associated with the
root node is the original tensor, the data associated with the leaf nodes are
MTTKRP results, and the data associated with internal nodes are temporary
tensors. Edges labeled with PM correspond to partial MTTKRP computations,
and edges labeled with mTTV correspond to multi-TTV computations.

Likewise, m
(2)
jr =

∑
i,k xijkuirwkr =

∑
i uir

∑
k xijkwkr =∑

i uirtijr, and we see that the temporary tensor T can be

re-used. From these expressions, we can also see that com-

puting T (a partial MTTKRP) corresponds to a matrix-matrix

multiplication, and computing each of M(1) and M(2) from

T (a multi-TTV) corresponds to R independent matrix-vector

multiplications. We compute M(3) using a full MTTKRP.

For a larger number of modes, a more general approach

can organize the temporary quantities to be used over a

maximal number of MTTKRPs. The general approach can

yield significant benefit, decreasing the computation by a

factor of approximately N/2 for dense N -way tensors. The

idea is introduced in [4], but we adopt the terminology and

notation of dimension trees used for sparse tensors in [28],

[29]. In this notation, the root node is labeled {1, . . . , N} and

corresponds to the original tensor, a leaf is labeled {n} and

corresponds to the nth MTTKRP result, and an internal node

is labeled by a set of modes {i, . . . , j} and corresponds to

a temporary tensor whose values contribute to the MTTKRP

results of modes i, . . . , j.

Figure 1 illustrates a dimension tree for the case N = 5.

Various shapes of binary trees are possible [4], [29]. For dense

tensors, the computational cost is dominated by the root’s

branches, which correspond to partial MTTKRP computations.

We perform the splitting of modes at the root so that modes are

chosen contiguously with the respect to the layout of the tensor

entries in memory. In this way, each partial MTTKRP can be

performed via BLAS’s GEMM interface without reordering

tensor entries in memory. All other edges in a tree correspond

to multi-TTVs and are typically much cheaper. By organizing

the memory layout of temporary quantities, the multi-TTV

operations can be performed via a sequence of calls using

BLAS’s GEMV interface. With BLAS, we are able to obtain

high performance and on-node parallelism.

Figure 2 shows the data layout and dimensions of a partial

MTTKRP and a multi-TTV taken from the example dimension

tree in Figure 1. Figure 2a shows a partial MTTKRP between

the input tensor X and the Khatri-Rao product of the factor

matrices in modes 1 and 2, which produces a temporary

tensor T corresponding to the {3, 4, 5} node in the dimension

(a) Partial MTTKRP to compute node {3, 4, 5} from
root node {1, 2, 3, 4, 5}, executed via one GEMM call.

(b) Multi-TTV to compute node {3} from node
{3, 4, 5}, executed via R GEMV calls. Here T(1)[r]
refers to the rth contiguous block of T(1).

Fig. 2. Data layout and dimensions for two example computations in
dimension tree shown in Figure 1. In this notation, X(1:2) is the matricization

of input tensor X with respect to modes 3 through 5, K1:2 = H(2) �H(1),
T is the temporary I3 × I4 × I5 ×R tensor corresponding to node {3, 4, 5}
in the dimension tree, K4:5 = H(5) � H(4), and M(3) is the MTTKRP
result for mode 3.

tree. The key to efficiency in this computation is that the

matricization of X that assigns modes 1 through 2 to rows

and modes 3 through 5 to columns is already column-major in

memory. Thus, we can use the GEMM interface and compute

the temporary tensor T without reordering any tensor entries.

Figure 2b depicts a multi-TTV that computes the results M(3)

from T and the factor matrices in modes 4 and 5. Here, the

tensor T is matricized with respect to only its first mode (of

dimension I3), but this matricization is also column-major in

memory. We choose the ordering of the modes of T such

that each of R contiguous blocks is used to compute one

column of the output matrix via a matrix-vector operation with

a corresponding column of the Khatri-Rao product of the other

factor matrices.

No matter how the dimension tree is designed, the com-

putational cost of each partial MTTKRP is O(IR), where

I is the number of tensor entries and R is the rank of the

CP decomposition. This is the same operation count as a

full MTTKRP. The computational cost of a multi-TTV is the

number of entries in the temporary tensor, which is the product

of a subset of the original tensor dimensions multiplied by R.

Thus, it is computationally cheaper than the partial MTTKRPs,

but it is also memory bandwidth bound.

The other subroutine necessary for implementing the di-

mension tree approach is the Khatri-Rao product of sets of

factor matrices. We implement the operation as a row-wise

Hadamard product of a set of factor matrix rows, and we use

OpenMP parallelization to obtain on-node parallelism. The

computational cost of this operation is also typically lower

order, but the running time in practice suffers from also being
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memory bandwidth bound.

B. Relative Error Computation

Given a model M = �H(1), . . . ,H(N)�, we compute the

relative error ‖A−M‖/‖A‖ efficiently by using the identity

‖A − M‖2 = ‖A‖2 − 2〈A,M〉 + ‖M‖2. The quantity

‖A‖ is fixed, and the other two terms can be computed

cheaply given the temporary matrices computed during the

course of the BCD algorithm. The second term can be com-

puted using the identity 〈A,M〉 = 〈M(N),H(N)〉, where

M(N) = A(N)(H
(N−1) � · · · �H(1)) is the MTTKRP result

in the N th mode. The third term can be computed using the

identity ‖M‖2 = 1T(S(N) ∗ H(N)TH(N))1 where S(N) =
H(1)TH(1) ∗ · · · ∗H(N−1)TH(N−1). Both matrices M(N) and

S(N) are computed during the course of the BCD algorithm

for updating the factor matrix H(N). The extra computation

involved in computing the relative error is negligible. These

identities have been used previously [14], [21], [25], [30].

C. Parallel Algorithm

Algorithm 2 �H(1), . . . ,H(N)� = Par-NNCP(A, R)

Require: A is an I1×· · ·×IN tensor distributed across a P1×· · ·×
PN grid of P processors, so that Ap is (I1/P1)×· · ·×(IN/PN )
and is owned by processor p = (p1, . . . , pN ), R is rank of
approximation

1: for n = 2 to N do
2: Initialize H

(n)
p of dimensions (In/P )×R

3: G = Local-SYRK(H
(n)
p )

4: G(n) = All-Reduce(G, ALL-PROCS)

5: H
(n)
pn = All-Gather(H

(n)
p , PROC-SLICE(n, pn))

6: end for
7: % Compute NNCP approximation
8: while not converged do
9: % Perform outer iteration of BCD

10: for n = 1 to N do
11: % Compute new factor matrix in nth mode
12: M = Local-MTTKRP(Ap1···pN , {H(i)

pi }, n)
13: M

(n)
p = Reduce-Scatter(M, PROC-SLICE(n, pn))

14: S(n) = G(1) ∗ · · · ∗G(n−1) ∗G(n+1) ∗ · · · ∗G(N)

15: H
(n)
p = Local-NLS-Update(S(n),M

(n)
p )

16: % Organize data for later modes
17: G = H

(n)
p

T
H

(n)
p

18: G(n) = All-Reduce(G, ALL-PROCS)

19: H
(n)
pn = All-Gather(H

(n)
p , PROC-SLICE(n, pn))

20: end for
21: end while
Ensure: A ≈ �H(1), . . . ,H(N)�

Ensure: Local matrices: H
(n)
p is (In/P )×R and owned by proces-

sor p = (p1, . . . , pN ), for 1 � n � N , λ stored redundantly on
every processor

1) Algorithm Overview: The basic sequential algorithm is

given in Algorithm 1, and the parallel version is given in

Algorithm 2. We will refer to both the inner iteration, in

which one factor matrix is updated (line 10 to line 20), and

the outer iteration, in which all factor matrices are updated

(line 8 to line 21). In the parallel algorithm, the processors are

organized into a logical multidimensional grid with as many

modes as the data tensor. The communication patterns used

in the algorithm are the MPI collectives All-Reduce, Reduce-

Scatter, and All-Gather. The processor communicators (across

which collectives are performed) include all processors and the

sets of processors within the same processor slice. Processors

within a mode-n slice all have the same nth coordinate.

The method of enforcing the nonnegativity constraints of the

linear least squares solve (or update) generally affects only

local computation because each row of a factor matrix can

be updated independently. In our algorithm, each processor

solves the linear problem or computes the update for its

subset of rows (see line 15). The most expensive (and most

complicated) part of the parallel algorithm is the computation

of the MTTKRP, which corresponds to lines 12, 13 and 19.

The details that are omitted from this presentation of the

algorithm include the normalization of each computed factor

matrix and the computation of the residual error at the end of

an outer iteration. The computations involve both local com-

putation and communication, but their costs are negligible.
2) Data Distribution: Given a logical processor grid of

processors P1 × · · · × PN , we distribute the tensor A in

a block or Cartesian partition. Each processor owns a local

tensor of dimensions (I1/P1) × · · · × (IN/PN ), and only

one copy of the tensor is stored. Locally, the tensor is stored

linearly, with entries ordered in a natural mode-descending

way that generalizes column-major layout of matrices. Given

a processor p = (p1, . . . , pN ), we denote its local tensor Ap.

Each factor matrix is distributed across processors in a

block row partition, so that each processor owns a subset of

the rows. We use the notation H(n)
p , which has dimensions

In/P × R to denote the local part of the nth factor matrix

stored on processor p. However, we also make use a redundant

distribution of the factor matrices across processors, because

all processors in a mode-n processor slice need access to

the same entries of H(n) to perform their computations. The

notation H(n)
pn

denotes the In/Pn×R submatrix of H(n) that

is redundantly stored on all processors whose nth coordinate

is pn (there are P/Pn such processors).

Other matrices involved in the algorithm include M(n)
p ,

which is the result of the MTTKRP computation and has the

same distribution scheme as H(n)
p , and G(n), which is the

R × R Gram matrix of the factor matrix H(n) and is stored

redundantly on all processors.
3) Inner Iteration: The inner iteration is displayed graph-

ically in Figure 3 for a 3-way example and an update of the

2nd factor matrix. The main idea is that at the start of the

nth inner iteration (Figure 3a), all of the data is in place

for each processor to perform a local MTTKRP computation.

This means that all processors in a slice redundantly own

the same rows of the corresponding factor matrix (for all

modes except n). After the local MTTKRP is computed

(Figure 3b), each processor has computed a contribution to

a subset of the rows of the global MTTKRP M(n), but its

contribution must be summed up with the contributions of

all other processors in its mode-n slice. This summation is

performed with a Reduce-Scatter collective across the mode-n
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U(1)

M(2)
U
(3)

(a) Start nth iteration with
redundant subset of rows of
each input matrix.

U(1)

M(2)
U
(3)

(b) Compute local MT-
TKRP for contribution to
output matrix M(2).

U(1)

M(2)
U
(3)

(c) Reduce-Scatter to com-
pute and distribute rows of
M(2).

U(1)

U(2)
U
(3)

(d) Compute local NLS up-

date to obtain H
(2)
p from

M
(2)
p (and S(2)).

U(1)

U(2)
U
(3)

(e) All-Gather to collect rows
of H(2) needed for later in-
ner iterations.

Fig. 3. Illustration of 2nd inner iteration of Par-NNCP algorithm for 3-way tensor on a 3×3×3 processor grid, showing data distribution, communication, and
computation across steps. Highlighted areas correspond to processor (1, 3, 1) and its processor slice with which it communicates. The column normalization

and computation of G(2), which involve communication across all processors, is not shown here.

processor slice that achieves a row-wise partition of the result

(in Figure 3c, the light gray shading corresponds to the rows

of M(2) to which processor (1, 3, 1) contributes and the dark

gray shading corresponds to the rows it receives as output).

The output distribution of the Reduce-Scatter is designed so

that afterwards, the update of the factor matrix in that mode

can be performed row-wise in parallel. Along with S(n),

which can be computed locally, each processor updates its

own rows of the factor matrix given its rows of the MTTKRP

result (Figure 3d). The remainder of the inner iteration is

preparing and distributing the new factor matrix data for future

inner iterations, which includes an All-Gather of the newly

computed factor matrix H(n) across mode-n processor slices

(Figure 3e) and recomputing G(n) = H(n)TH(n).

4) Analysis: We will analyze the cost of a single outer

iteration. While the number of outer iterations is sensitive to

the NLS method used, the outer iteration time is generally

comparable across NLS methods.

a) Computation: The local computation occurs at

lines 12, 14, 15 and 17. The cost of line 14 is O(NR2),
the cost of line 15 is O(R3In/P ), which is a loose upper

bound for BPP and other methods [31], and the cost of line 17

is O(R(In/P )2). The sum of these three costs across all

inner iterations is O(R2N2+(R3/P )
∑

In+(R/P 2)
∑

I2n),
which is dominated by the cost of the MTTKRP. When

using dimension trees to perform the MTTKRP (line 12),

we compute the cost amortized over all inner iterations. In

this case, the cost is dominated by the two partial MTTKRP

computations (from the root of the tree), which together are

O((R/P )
∏

In) = O(IR/P ) and dominate the costs of the

multi-TTVs. We note that this cost involves the product of all

the tensor dimensions, which is why it dominates, and we note

that it scales linearly with P .

b) Communication: The communication within the inner

iteration occurs at lines 13, 18 and 19. Line 18 involves O(R2)
data and a collective across all processors. Lines 13 and 19

involve O(InR/Pn) data across a subset of P/Pn processors.

Thus, the All-Reduce dominates the latency cost and the

Reduce-Scatter/All-Gather dominate the bandwidth cost, for

a total outer iteration communication cost of O(R
∑

In/Pn)
words and O(N logP ) messages. If the optimal processor grid

can be chosen to minimize communication (assuming P is

sufficiently factorable), then the bandwidth cost can achieve a

value of O(NRI1/N/P 1/N ) by making the local tensors as

cubical as possible. We note that this cost scales with P 1/N ,

which is far from linear scaling. However, it is proportional

to the geometric mean of the tensor dimensions (on the

order of one tensor dimension), which is much less than the

computation dependence on the product of all dimensions.

c) Memory: The algorithm requires extra local memory

to run. Aside from the memory required to store the local

tensor of O(I/P ) words and factor matrices of cumulative

size O((R/P )
∑

In), each processor must be able to store

a redundant subset of the rows of the factor matrices it

needs to perform MTTKRP computations. This corresponds to

storing P/Pn redundant copies of every factor matrix, which

results in a local memory requirement of O(R
∑

In/Pn) for

a general processor grid. The processor grid that minimizes

communication also minimizes local memory, and the extra

memory requirement can be as low as O(NRI1/N/P 1/N ),
which is typically dominated by O(I/P ).

The dimension tree algorithm also requires extra temporary

memory space, but the space required tends to be much smaller

than what is required to store the local tensor. If the tensor

dimensions can be partitioned into two parts with approxi-

mately equal geometric means, the extra memory requirement

for running a dimension tree is as small as O(R
√

I/P ), which

is also typically dominated by O(I/P ).

V. PERFORMANCE RESULTS

A. Datasets

1) Hyperspectral Images (HSI): For comparison with previ-

ous work [6], we consider the same 3D hyperspectral imaging

dataset called “Souto wood pile” [2]. NNCP is often used on

HSI data sets for classification and blind source separation of

materials with differing spectral signatures. The hyperspectral

datacube has dimensions 1024×1344×33 and represents a set

of 33 grayscale images of size 1344 × 1024 pixels sampled

at wavelengths 400, 410, . . . , 720 nm, with each pixel value

representing spectral radiance in Wm−2sr−1nm−1. We also

consider the Nogueiró scene dataset, which is a sequence of 9

time-lapse HSI images of the same scene acquired at about
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1-hour intervals. In each scene, hyperspectral images were

acquired at about 1-hour intervals. Each Nogueiró scene HSI

image has the same properties as the Souto wood pile data

set, yielding a 1024× 1344× 33× 9 tensor.

2) Dynamic Functional Connectivity (dFC): We also con-

sider dynamic functional connectivity datasets that are gener-

ated from fMRI images of human brains. Given a 4D fMRI

data set of voxel measurements across multiple timesteps, vox-

els containing brain data are partitioned into a set of regions

of interest (specified using domain-specific knowledge), and

a single time-series signal is aggregated for each region of

interest. Then, an instantaneous correlation is computed for

each time point and pair of regions, and this process is repeated

for a number of subjects. Computing a CP decomposition of

this data helps to discover patterns of brain connectivity among

different regions and also differentiate among individuals. For

our representative dFC data set, we consider 246 brain regions,

which yields 30,012 unique pairs of regions, 1200 times steps,

and 500 subjects, a 30,012× 1200× 500 tensor [3], [32].

3) Synthetic: Our synthetic data sets are constructed from a

CP model with an exact low rank with no added noise. In this

case we can confirm that the residual error of our algorithm

with a random start converges to zero. For the purposes of

benchmarking, we run a fixed number of iterations of the BCD

algorithm rather than using a convergence check.

B. Machine Details

The entire experimentation was performed on Eos, a super-

computer at the Oak Ridge Leadership Computing Facility.

Eos is a 736-node Cray XC30 cluster of Intel Xeon E5-2670

processors with a total of 47.104TB of memory. Its compute

nodes are organized in blades where each blade contains 4

nodes, and every node has 2 sockets with 8 physical cores

and 64GB memory. In total, Eos contains 11,776 traditional

processor cores and our experiments used up to 4,096 cores

(35% of the machine).

Our objective of the implementation is using open source

software as much as possible to promote reproducibility and

reuse of our code. We use Armadillo [33] for matrix represen-

tation and operations. In Armadillo, the elements of the dense

matrix are stored in column major order. For dense BLAS and

LAPACK operations, we linked Armadillo with the default

LAPACK/BLAS wrappers from Cray. We use multithreaded

LAPACK/BLAS except as noted in Section V-C. We use GNU

C++ Compiler (g++ (GCC) 6.3.0) and Cray’s MPI library.

C. Comparison Implementations

The implementation proposed by Liavas et al. [6] is the only

publicly available distributed-memory software (of which we

are aware) for computing the CP decomposition of dense ten-

sors, with or without constraints. We use the acronym NbAO-

NTF for Nesterov-based Alternating Optimization Nonnega-

tive Tensor Factorization to refer to their code.

It is based on the same parallel algorithm as our imple-

mentation, though it is limited to 3D tensors. The code uses

MPI collectives for communication and Eigen [34] as an

interface to BLAS and LAPACK. We compiled the code linked

to BLAS/LAPACK wrappers from Cray (the same BLAS

implementation used by our code) but we were unable to run

multithreaded BLAS with their code. For fair comparison, we

use a flat MPI configuration (one MPI process per core) on

all comparisons between the two implementations (Figures 4,

5 and 10). For all other experiments, we use hybrid MPI (one

MPI process per node) and OpenMP and multithreaded BLAS

for on-node parallelism.

We also point out a difference between the Nesterov-based

algorithm and the BPP algorithm for solving the NLS subprob-

lems. The Nesterov-based algorithm attempts an acceleration

step using a linear combination of the current and proposed

future step; however, it re-computes the residual error before

deciding whether or not to accept or reject the accelera-

tion step. This residual error cannot always be computed

cheaply, using the technique described in section IV-B, and

it contributes significantly (approximately 25%) to the overall

run time. Because the BPP algorithm does not require this

extra computation, and studying convergence behavior of the

different NLS algorithms is beyond the scope of this work, we

remove the time spent in the acceleration step of NbAO-NTF

in all our comparisons.

Our proposed algorithm uses dimension trees, but we also

benchmark our implementation without that optimization to

highlight its importance. We use an existing implementation

to perform the individual MTTKRPs [35] with this approach.

D. Strong Scaling

We perform two strong scaling experiments on 3D tensors

to compare performance with NbAO-NTF. The experiments

use a cubical synthetic tensor and the HSI image used in [6].

The performance on the cubical synthetic tensor is shown

in Figure 4. We can observe from the figure that all the

three algorithms scale nearly linearly as the problem remains

compute bound. Our algorithm (with the dimension tree

optimization) achieves a speedup of 1771× on 4096 cores

over the same implementation running on 1 core. Recall

from that the computation scales linearly with 1/P while the

communication scales with 1/P 1/N = 1/P 1/3. As is evident

from the figure, the communication cost does not degrade

performance even for thousands of cores. Our proposed al-

gorithm with dimension trees is 35% faster than NbAO-NTF

at 512 cores (with similar relative difference for other core

counts). This performance improvement is due in large part to

the 50% reduction in arithmetic provided by the dimension tree

optimization. There is little difference in performance between

our implementation without dimension trees and NbAO-NTF.

Figure 5 shows the strong scaling on the HSI data. In this

case, our proposed algorithm with dimension trees is over 2×
faster than NbAO-NTF, but part of this speedup is due to

differences in the NLS update algorithms. For the low core

count, the dimension tree provides a 60% speedup compared

to the MTTKRP time in NbAO-NTF. At the high core counts,

the local MTTKRP is no longer the dominating cost.
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Fig. 4. Strong scaling of 3D synthetic tensor with dimension 1024×1024×
1024 and rank 32 on processor grids 2k × 2k × 2k for k ∈ {0, 1, 2, 3, 4}.
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Fig. 5. Strong scaling of 3D HSI real world data with dimension 1024 ×
1344×33 and rank 32 on processor grids of k×k×1 for k ∈ 1, 2, 4, 8, 16, 32.

In Figure 6, we benchmark performance for a 5D cubical

tensor with each dimension set to 64. Because the tensor is

5D, we can no longer compare against NbAO-NTF. We see

a 13−16× speed up using a dimension tree over not using

one. As predicted, the dimension tree optimization saves rela-

tively more arithmetic for higher-order tensors. However, the

reduction in leading order flop cost is only 2.5× for N = 5;

the rest of the speedup comes from more efficient DGEMM

performance and avoiding memory-bound KRP computation.

That is, although the flop count of KRP computation is lower

order, it still contributes to the run time because it is inefficient.

Also, for tensors with balanced dimensions, the dimension tree

approach yields more favorable shapes for DGEMM.

E. Weak Scaling Time Breakdown

We also perform a weak scaling experiment to understand

the time it takes to solve bigger problems with more pro-

cessors. In this experiment, we use a synthetic 4D tensor

and keep the amount of tensor data assigned to each pro-

cessor constant, with tensor and processor grid of dimensions

128k×128k×128k×128k and k×k×k×k for k ∈ {1, 2, 3, 4}
and the rank fixed at 32. The results of the breakdown plot

is shown in Figure 7. In this case, the algorithm is compute

bound with and without the use of the dimension tree, so the

total time of the weak scaling remains fixed for both cases.
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Fig. 6. Strong scaling of 5D synthetic tensor with dimension 64 × 64 ×
64× 64× 64 and rank 32 on processor grids 1×1×1×1×1, 2×1×1×1×1,
. . . , 2×2×2×2×2.
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Fig. 7. Weak scaling of 4D synthetic tensors with (D) and without (N)
the use of dimension trees. The tensor and processor grid dimensions are
128k × 128k × 128k × 128k and k × k × k × k for k ∈ {1, 2, 3, 4}, and
the rank is fixed at 32. The reported times are per iteration.

Using a dimension tree, the time is completely dominated by

the MTTKRP computation. Without using a dimension tree,

we observe that the KRP is expensive and yields a 2.5× slower

total run time even in the 4D case.

F. Varying Processor Grid

In order to illustrate the effect of processor grid choice

on running time, we show in Figure 8 a time breakdown

over various processor grid choices for a 4D problem on

81 processors. Because the tensor is cubical and 81 has a

restricted factorization into 4 numbers, there are 5 distinct

processor grids. The overall takeaway is that the processor

grid has very little effect on running time; in this experiment

there is less than 10% variation in overall time. While the

optimal processor grid reduced the communication time by

approximately 3× compared to the other processor grids, the

running time is dominated by local computation, so it had little

effect on overall time. Furthermore, adjusting the processor

grid affects the local tensor dimensions and the performance

of the local computations, and the optimal processor grid led

to slower local performance. For R = 10, all of the local
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Fig. 8. Time breakdown for 243×243×243×243 tensor and rank R = 10
on 81 processors for varying processor grids.

computation is memory bandwidth bound, and we believe the

variations in running times to be effects of some temporary

quantities fitting into smaller levels of cache.

G. Varying Approximation Rank

One of the challenges of the CP (and NNCP) decomposition

in practice is the choice of decomposition rank. The most

common technique is to compute multiple CP decompositions

for various ranks. As the rank R increases, the approximation

error ‖A−M‖ decreases with the better approximation power

of more parameters. However, the benefit of increasing R
eventually diminishes if the data is truly low rank. Towards

this end, we experiment with various values of R to observe

the relative increase in time for two real-world data sets.

Figure 9 shows the time breakdown of our implemen-

tation using a dimension tree on the 4D HSI dataset for

R = {10, . . . , 50}. We observe an overall time increase with

increased R, but each part of the computation scales slightly

differently. The multi-TTV computation (mTTV) scales lin-

early with the increasing R, whereas the partial MTTKRP

(PM) is scaling super-linearly. This is because mTTV is cast

as matrix-vector products (DGEMV) and PM is cast as matrix-

matrix products (DGEMM). As R increases from 10 to 50,

DGEMM performance improves but DGEMV performance is

constant. The local NLS time is increasing with O(R3) as

expected and the All-Reduce required for the Gram matrices

scales with O(R2), becoming a significant cost for larger R.

In Figure 10 we compare performance for various ranks R
across all 3 algorithms, again used flat MPI. Starting at R = 10
we see the largest speed up of 2× for our implementation

with a dimension tree over NbAO-NTF. This is due to a

combination of the dimension tree performing fewer flops in

the MTTKRPs and KRPs. However, as the rank increases this

speed up diminishes to 1.6×. The loss of speed up is a result

of the fact that, as we observed in Figure 9, the multi-TTV

operations do not scale as well as the partial-MTTKRPs for

increasing R. Again, the performance of our implementation

without using dimension trees is comparable to NbAO-NTF.
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Fig. 9. Per-iteration time breakdown of our implementation (using dimension
trees) over various ranks for a time-lapse HSI dataset with dimensions 1344×
1024× 33× 9 on 64 processors arranged in a 8× 8× 1× 1 grid.
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Fig. 10. Overall running time for dFC dataset with dimensions 30,012 ×
1200 × 500 on 1440 cores arranged in a 2 × 6 × 120 processor grid and
varying choices of rank R.

VI. CONCLUSION

In this work, we present a new implementation for

distributed-memory NNCP. The algorithm is general enough

to handle any number of modes in the data tensor and can

be adapted to use any NLS algorithm within the context of

BCD (ALS). We use a dimension tree optimization to avoid

unnecessary recomputation within the bottleneck local MT-

TKRP computation, and we use an efficient parallelization that

minimizes communication cost. Our performance results show

the ability to scale well, and we show favorable performance

in comparison to state-of-the-art software for 3D tensors.

In particular, the performance results demonstrate that com-

puting NNCP for dense tensors involves heavy computation

relative to the sizes of the computed factor matrices. By

avoiding the communication of tensor entries and commu-

nicating only the factor matrices, the parallel algorithm is

nearly always compute bound. This observation is supported

by the theoretical analysis: although the communication does

not scale as well with P , the total amount of data depends

on a sum of dimensions rather the product of the dimensions,

which determines the total amount of computation.

We can also conclude from the performance results that

the dimension tree optimization is the key to performance
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improvement over the state-of-the-art approaches. For 3D

tensors, we observe a benefit larger than the theoretical 50%

reduction in computation, and for larger numbers of modes,

the improvement is only magnified. Besides the reduction in

flops, the dimension tree approach enjoys better DGEMM

performance and avoids memory-bound KRP computations.

Furthermore, we see that tuning the processor grid had much

less effect on overall performance. Not only do reductions

in communication not matter as much as computation, but

different local tensor sizes can also cause variations in local

performance that outweigh the savings in communication.
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